Detection of Financial Statements Fraud in Russian Companies: Analysis of Beneish and Roxas Models Applicability

Authors

DOI:

https://doi.org/10.21638/11701/spbu18.2016.303

Abstract

Currently the stakeholders of companies, in Russia and worldwide, need the instruments which enable them to detect financial statements fraud. The models developed by M. Beneish and M. Roxas are the examples of such instruments. However these models can not take into account specific features of accounting reporting regulations, accounting standards and business practices in Russia. Based on the sample of 60 Russian companies the authors discovered that the models by Beneish and Roxas identify whether financial statement fraud takes place or not only in 62% and 58% of cases respectively. The article suggests and assesses the revision of models’ benchmarks on the base of data on Russian companies. This revision increases the performance of models proposed by Beneish and Roxas to detect financial statement fraud.

Keywords:

financial statement, financial statement fraud, Beneish model, Roxas model, Russian companies

Downloads

Download data is not yet available.
 

References

ЛИТЕРАТУРА НА РУССКОМ ЯЗЫКЕ

Бухвалов А. В. 2008. Асимметрия между инсайдерами и аутсайдерами: проблема двойственности оценки активов компании. Российский журнал менеджмента 6 (4): 17–48.

Бюллетень банковской статистики № 12 (187). 2008. Центральный банк Российской Федерации. http://www.cbr.ru/publ/BBS/Bbs0812r.pdf

Единая база данных решений судов общей юрисдикции Российской Федерации. [Электронный ресурс]. http://xn--90afdbaav0bd1afy6eub5d.xn--p1ai/

Кизилов А. Н., Богатая И. Н. 2015. Анализ состояния и направления развития рынка аудиторско-консалтинговых услуг в России. Международный бухгалтерский учет (6): 37–51.

Когденко В. Г. 2015. Корпоративное мошенничество: анализ схем присвоения активов и способов манипулирования отчетностью. Экономический анализ: теория и практика (4): 2–13.

Положение по бухгалтерскому учету (ПБУ) «Учет основных средств» ПБУ 6/2001 от 30.03.2001.

Принципы корпоративного управления ОЭСР. 2004. ОЭСР. https://www.oecd.org/corporate/ca/corporategovernanceprinciples/32159669.pdf

РосПравосудие [Электронный ресурс]. https://rospravosudie.com/

Российский обзор экономических преступлений за 2014 год. 2014. [Электронный ресурс]. PricewaterhouseCoopers. https://www.pwc.ru/ru/ceo-survey/assets/crime_survey_2014.pdf

Ружанская Л. С. 2010. Раскрытие информации российскими компаниями: результаты эмпирического исследования. Российский журнал менеджмента 8 (3): 35–56.

Статистика Центрального банка РФ: Структура платежей, проведенных через кредитные организации (по платежным инструментам). [Электронный ресурс]. http://www.cbr.ru/statistics/p_sys/print.aspx?file=sheet007.htm&pid=psrf&sid=ITM_12859

Титова С. 2011. Игры с отчетностью. Новая бухгалтерия (4): 44–48.

Федеральная служба государственной статистики: степень износа основных фондов по видам экономической деятельности по полному кругу организаций. 2014. [Электронный ресурс]. http://www.gks.ru/wps/wcm/connect/rosstat_main/rosstat/ru/statistics/enterprise/fund/#

Экономическая преступность сегодня. Статистика экономической преступности за 2014 год (по данным МВД РФ). [Электронный ресурс]. http://econcrime.ru/statistika-e-konomicheskoj-prestupnosti-za-2014-god-po-danny-m-mvd-rf/

Экономические преступления: люди, культура и механизмы контроля. Четвертый всемирный обзор экономических преступлений. 2008. PricewaterhouseCoopers. http://www.pwc.ru/forensic

REFERENCES IN LATIN ALPHABET

Albrecht S., Howe K., Romney M. 1985. Deterring fraud: The internal auditors perspective. Accounting Review 60 (4): 774–775.

Bay S., Kumaraswamy K. 2006. Large Scale Detection of Irregularities in Accounting Data. Proceedings of the 6th IEEE International Conference on Data Mining. Hong Kong; 75–86.

Beneish M. 1999. The detection of earningmanipulation. Financial Analysts Journal 55 (5): 24–36.

Cecchini M., Aytug H., Koehler G. 2010. Detecting management fraud in public companies. Management Science 56 (7): 1146–1160.

Dechow P., Larson C., Sloan R. 2011. Predicting material accounting misstatements. Contemporary Accounting Research 28 (1): 1–16.

Draft of the Nationwide Survey “Practice of Fighting the Corporate Fraud” Final Report. 2014. http://www.vegaslex.ru/data/2014/04/16/1234640503/VEGAS%20LEX_Antifraud%20survey%20report_03.2014.pdf

Dzamba A. 2004. 36 Red flags to look for when reviewing financial reporting controls. Financial Analysis, Planning & Reporting (8): 1–12.

Competing for Growth: How Business Is Growing Beyond Boundaries. 2011. Ernst & Young. https://drivkraft.ey.se/wp-content/blogs.dir/5/files/2011/08/Competing_for_growth_2011.pdf

Fanning K., Cogger K. 1998. Neural network detection of management fraud using published financial data. International Journal of Intelligent Systems in Accounting and Finance Management (7): 21–41.

Gaganis C. 2009. Classification techniques for the identification of falsified financial statements: A comparative analysis. International Journal of Intelligent Systems in Accounting and Finance Management (16): 207–229.

Green B., Choi J. 1997. Assessing the risk of management fraud through neural network technology. Auditing 16 (1): 14–28.

Kaminski K., Wetzel T., Guan L. 2004. Can financial ratios detect fraudulent financial reporting. Managerial Auditing Journal 19 (1): 15–28.

Lin J., Hwang M., Becker J. 2003. A fuzzy neural network for assessing the risk of fraudulent financial reporting. Managerial Auditing Journal 18 (8): 657–665.

Report to the Nations on Occupational Fraud and Abuse. 2014. http://www.acfe.com/rttn/docs/2014-report-to-nations.pdf

Rezaee Z. 2002. Financial Statement Fraud: Prevention and Detection. Wiley: N. Y.

Roxas M. 2011. Financial statement fraud detection using ratio and digital analysis. Journal of Leadership, Accountability and Ethics 8 (4): 56–66.

Summers S., Sweeney J. 1998. Fraudulently misstated financial statements and insider trading: An empirical analysis. Accounting Review 73 (1): 131–146.

Toraman C. 2002. Yeni cagin finansal analizin istihbari boyutunda meydana getirdigi degisiklikler. Muhasebe ve Denetime Bakis Dergisi (6): 57–66.

Weiss L. 1990. Bankruptcy resolution. Direct costs and violation of priority of claims. Journal of Financial Economics 27 (2): 255–311.


Translation of references in Russian into English

DBukhvalov A. V. 2008. Asymmetry between insiders and outsiders: Aspects of valuation duality. Rossiiskii zhurnal menedzhmenta 6 (4): 17–48.

Bulletin of Banking Statistics, No. 12 (187). 2008. The Central Bank of the Russian Federation. http://www.cbr.ru/publ/BBS/Bbs0812r.pdf

Unified database of the decisions of general jurisdiction courts of Russian Federation. [Electronic resource]. http://xn--90afdbaav0bd1afy6eub5d.xn--p1ai/

Kizilov А. N., Bogataya I. N. 2015. Analysis of condition and areas of the audit and consulting services market’s development in Russia. Mezhdunarodnyj bukhgalterskij uchet (6): 37–51.

Kogdenko V. G. 2015. Corporate fraud: analysis of asset misappropriation schemes and ways to manipulate reporting. Ekonomicheskij analiz: teoriya i praktika (4): 2–13.

Accounting Regulations (AR) “Accounting for fixed assets” PBU 6/2001 of 30.03.2001.

RusLaw [Electronic resource]. https://rospravosudie.com/

Russian economic crime survey 2014. 2014 [electronic resource]. PricewaterhouseCoopers. https://www.pwc.ru/ru/ceo-survey/assets/crime_survey_2014.pdf

Ruzhanskaya L. S. 2010. Corporate transparency in Russia: The results of empirical study. Rossiiskii zhurnal menedzhmenta 8 (3): 35–56.

Statistics of the Central Bank of the Russian Federation: The structure of payments made through credit institutions (by payment instruments). [Electronic resource]. http://www.cbr.ru

Titov S. 2011. Statements games. Novaya bukhgalteriya (4): 44–48.

Federal State Statistics Service: The degree of depreciation of fixed assets by types of activities for the full range of organizations. 2014. [Electronic resource]. http://www.gks.ru

Economic crime today. Economic crime statistics for 2014 (according to the Ministry of Internal Affairs of the Russian Federation). [Electronic resource]. http://econcrime.ru/statistika-e-konomicheskoj-prestupnosti-za-2014-god-po-danny-m-mvd-rf/

Economic crime: People, culture & mechanisms of control. The 4th global economic crime survey. 2008. PricewaterhouseCoopers. http://www.pwc.ru/forensic

Published

2016-10-25

How to Cite

Feruleva, N. V., & Stefan, M. A. (2016). Detection of Financial Statements Fraud in Russian Companies: Analysis of Beneish and Roxas Models Applicability. Russian Management Journal, 14(3), 49–70. https://doi.org/10.21638/11701/spbu18.2016.303

Issue

Section

Theoretical and Empirical Studies