Управление знаниями организации и большие языковые модели

Авторы

  • Юрий Александрович Зеленков Высшая школа бизнеса, Национальный исследовательский университет «Высшая школа экономики», Россия

DOI:

https://doi.org/10.21638/spbu18.2024.309

Аннотация

Цель исследования: обобщение, классификация и анализ современных научных публикаций, посвященных использованию больших языковых моделей (large language models) в управлении знаниями организации.

Методология исследования: систематический обзор литературы на основе модели PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses). Для анализа отобрано 75 публикаций — научные статьи и отчеты консалтинговых компаний, вышедшие начиная с 2020 г.

Результаты исследования: выделены четыре основные направления исследований: (1) проблемы внедрения больших языковых моделей; (2) влияние больших языковых моделей на эффективность управления знаниями; а также применение больших языковых моделей в процессах (3) использования и (4) создания знаний. В рамках каждого направления рассмотрены ключевые публикации и открытые вопросы.

Оригинальность и значимость результатов: представлен систематический обзор современных зарубежных публикаций, предложена классификация исследовательских тем, определены потенциальные направления новых исследований. Рассмотрены ограничения, препятствующие внедрению больших языковых моделей в практику управления знаниями организации.

Ключевые слова:

генеративный AI, большие языковые модели, управление знаниями, систематический обзор литературы

Скачивания

Данные скачивания пока недоступны.
 

Библиографические ссылки

Литература на русском языке

Долотов А. 2024. Сложности интеграции: что поможет ускорить GPT-трансформацию бизнеса. Forbes. [Электронный ресурс]. https://www.forbes.ru/mneniya/507501-sloznosti-integracii-cto-pomozet-uskorit-gpt-transformaciu-biznesa (дата обращения: 05.04.2024).

Яков и Партнеры. 2023. Искусственный интеллект в России — 2023: тренды и перспективы. [Электронный ресурс]. https://yakovpartners.ru/publications/ai-future/ (дата обращения: 05.04.2024).


References in Latin Alphabet

Agarwal R., Singh A., Zhang L. M., Bohnet B., Rosias L. et al. 2024. Many-shot in-context learning. arXiv preprint. https://doi.org/10.48550/arXiv.2404.11018

Agostini, L., Nosella, A., Sarala, R., Spender, J. C., Wegner, D. (2020). Tracing the evolution of the literature on knowledge management in inter-organizational contexts: a bibliometric analysis. Journal of Knowledge Management 24 (2): 463–490. http://dx.doi.org/10.1108/JKM-07-2019-0382

Alavi M., Leidner D. 2001. Knowledge management and knowledge management systems: Conceptual foundations and research issues. MIS Quarterly 25 (1): 107–136. https://doi.org/10.2307/3250961

Alavi M., Leidner D., Mousavi R. 2024. A knowledge management perspective of generative artificial intelligence. Journal of the Association for Information Systems 25 (1): 1–12. https://doi.org/10.17705/1jais.00859

Anderson G., Dunlap K., Rademacher J., McMenamy N. 2009 Metaplan: A mutual methodology for interdisciplinary research. SoTL Commons Conference: 104. [Electronic resource]. https://digitalcommons.georgiasouthern.edu/sotlcommons/SoTL/2009/104 (accessed: 28.06.2024).

Asudani D. S., Nagwani N. K., Singh P. 2023. Impact of word embedding models on text analytics in deep learning environment: A review. Artificial Intelligence Review 56 (9): 10345–10425. https://doi.org/10.1007/s10462-023-10419-1

Azeem, M., Ahmed, M., Haider, S., Sajjad, M. 2021. Expanding competitive advantage through organizational culture, knowledge sharing and organizational innovation. Technology in Society 66: 101635. https://doi.org/10.1016/j.techsoc.2021.101635

Babaei G., Giudici P. 2024. GPT classifications, with application to credit lending. Machine Learning with Applications 16: 100534. https://doi.org/10.1016/j.mlwa.2024.100534

Beheshti A., Yang J., Sheng Q., Benatallah B., Casati F., Dustdar Sh., Nezhad H. R., Zhang X., Xue Sh. 2023. ProcessGPT: Transforming business process management with generative artificial intelligence. In: 2023 IEEE International Conference on Web Services (ICWS); 731–739. https://doi.org/10.1109/ICWS60048.2023.00099

Berg J. M., Raj M., Seamans R. 2023. Capturing value from artificial intelligence. Academy of Management Discoveries 9 (4): 424–428. https://doi.org/10.5465/amd.2023.0106

Bilgram V., Laarmann F. 2023. Accelerating innovation with generative AI: AI-augmented digital prototyping and innovation methods. IEEE Engineering Management Review 51 (2): 18–25. https://doi.org/10.1109/EMR.2023.3272799

Brossar M., Corbo J., Klaeyle M., Wiseman B. 2022. Deep learning in product design. McKinsey & Company. [Electronic resource]. https://www.mckinsey.com/capabilities/operations/our-insights/deep-learning-in-product-design (accessed: 02.05.2024).

Brown T., Mann B., Ryder N., Subbiah M., Kaplan J. et al. 2020. Language models are few-shot learners. In: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). [Electronic resource]. https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf (accessed: 09.04.2024).

Carrera-Rivera A., Ochoa W., Larrinaga F., Lasa G. 2022. How-to conduct a systematic literature review: A quick guide for computer science research. MethodsX 9: 101895. https://doi.org/10.1016/j.mex.2022.101895

Castelvecchi D. 2023. How will AI change mathematics? Rise of chatbots highlghts discussion. Nature 615: 15–16. [Electronic resource]. https://www.nature.com/articles/d41586-023-00487-2 (accessed: 28.06.2024).

Chang Y., Wang, X., Wang, J., Wu Y., Yang L. et al. 2024. A survey on evaluation of large language models. ACM Transactions on Intelligent Systems and Technology 15 (3): 1–45. https://doi.org/10.1145/3641289

Chen B., Sætre R., Miyao Y. 2024. A comprehensive evaluation of inductive reasoning capabilities and problem solving in large language models. In: Findings of the Association for Computational Linguistics: EACL 2024; 323–339. [Electronic resource]. https://aclanthology.org/2024.findings-eacl.22 (accessed: 29.04.2024).

Chui M., Hazan E., Roberts R., Singla A., Smaje K. et al. 2023. The economic potential of generative AI. The next productivity frontier. McKinsey & Company. [Electronic resource]. https://www.mckinsey.com/capabilities/mckinsey-digital/our-insights/the-economic-potential-of-generative-AI-the-next-productivity-frontier#/ (accessed: 23.04.2024).

Dalkir K. 2023. Knowledge Management in Theory and Practice. 4th ed. The MIT Press.

Dell'Acqua F., McFowland E., Mollick E., Lifshitz-Assaf H., Kellogg K. et al. 2023. Navigating the jagged technological frontier: Field experimental evidence of the effects of AI on knowledge worker productivity and quality. Harvard Business School Technology & Operations Mgt. Unit Working Paper No. 24–013. [Electronic resource]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4573321 (accessed: 22.04.2024).

Dumas M., Fournier F., Limonad L., Marrella A., Montali M. et al. 2023 AI-augmented business process management systems: A research manifesto. ACM Transactions on Management Information Systems 14 (1): 1–19. https://doi.org/10.1145/3576047

Durst S., Foli S., Edvardsson I. R. 2024. A systematic literature review on knowledge management in SMEs: Current trends and future directions. Management Review Quarterly 74: 263–288. https://doi.org/10.1007/s11301-022-00299-0

Eisfeldt A., Shubert G., Zhang M. 2023. Generative AI and firm value. NBER Working Paper No. 31222. [Electronic resource]. http://www.nber.org/papers/w31222 (accessed: 22.04.2024).

Eloundou T., Manning S., Mishkin P., Rock D. 2023. GPTs are GPTs: An early look at the labor market impact potential of large language models. arXiv preprint. https://doi.org/10.48550/arXiv.2303.10130

Fahland D., Fournier F., Limonad L., Skarbovsky I., Swevels A. J. 2024. How well can large language models explain business processes? arXiv preprint. https://doi.org/10.48550/arXiv.2401.12846

Felten E. W., Raj M., Seamans R. 2023. Occupational heterogeneity in exposure to generative AI. SSRN: 4414065. https://dx.doi.org/10.2139/ssrn.4414065

Galera-Zarco C., Floros G. 2023. A deep learning approach to improve built asset operations and disaster management in critical events: An integrative simulation model for quicker decision making. Annals of Operations Research (Early Access). https://doi.org/10.1007/s10479-023-05247-z

Gao Y., Xiong Y., Gao X., Jia K., Pan J. et al. 2023. Retrieval-augmented generation for large language models: A survey. arXiv preprint. https://doi.org/10.48550/arXiv.2312.10997

Gaviria-Marin, M., Merigó, J.M., Baier-Fuentes, H. 2019. Knowledge management: a global examination based on bibliometric analysis. Technological Forecasting and Social Change 140: 194-220. https://doi.org/10.1016/j.techfore.2018.07.006

Grosse R., Bae J., Anil C., Elhage N., Tamkin A. et al. 2023. Studying large language model generalization with influence functions. arXiv preprint. https://doi.org/10.48550/arXiv.2308.03296

Guo T., Nan B., Liang Z., Guo Z., Chawla N. et al. 2023. What can large language models do in chemistry? A comprehensive benchmark on eight tasks. In: Advances in Neural Information Processing Systems (NeurIPS 2023); 59662–59688. [Electronic resource]. https://proceedings.neurips.cc/paper_files/paper/2023/hash/bbb330189ce02be00cf7346167028ab1-Abstract-Datasets_and_Benchmarks.html (accessed: 29.04.2024).

Han J., Sarica S., Shi F., Luo J. 2022. Semantic networks for engineering design: State of the art and future directions. Journal of Mechanical Design 144 (2): 020802. https://doi.org/10.1115/1.4052148

Han S. J., Ransom K. J., Perfors A., Kemp C. 2024. Inductive reasoning in humans and large language models. Cognitive Systems Research 83: 101155. https://doi.org/10.1016/j.cogsys.2023.101155

Harfouche A., Quinio B., Saba M., Saba P. 2023. The recursive theory of knowledge augmentation: Integrating human intuition and knowledge in artificial intelligence to augment organizational knowledge. Information Systems Frontiers 25: 55–70. https://doi.org/10.1007/s10796-022-10352-8

Harrer S. 2023. Attention is not all you need: The complicated case of ethically using large language models in healthcare and medicine. eBioMedicine 90: 104512. https://doi.org/10.1016/j.ebiom.2023.104512

Hendrycks D., Burns C., Basart S., Zou A., Mazeika M. et al. 2021. Measuring massive multitask language understanding. In: Proceedings of the International Conference on Learning Representations. https://doi.org/10.48550/arXiv.2009.03300

Hogan A., Gutierrez C., Cochez M., de Melo G., Kirrane S. et al. 2022. Knowledge Graphs. Springer. https://doi.org/10.1007/978-3-031-01918-0

Horton J. 2023. Large language models as simulated economic agents: What can we learn from homo silicus? NBER Working Paper No. 31122. [Electronic resource]: http://www.nber.org/papers/w31122 (accessed: 18.04.2024).

Hu E., Shen Y., Wallis P., Allen-Zhu Z., Li Y. et al. 2021. LORA: Low-rank adaptation of large language models. arXiv preprint. https://doi.org/10.48550/arXiv.2106.09685

Hu X., Tian Y., Nagato K., Nakao M., Liu A. 2023. Opportunities and challenges of ChatGPT for design knowledge management. Procedia CIRP 119: 21–28. https://doi.org/10.1016/j.procir.2023.05.001

Huang J., Chen X., Mishra S., Zheng H. S., Yu A. W. et al. 2023. Large language models cannot self-correct reasoning yet. arXiv preprint. https://doi.org/10.48550/arXiv.2310.01798

Inkinen H. 2016. Review of empirical research on knowledge management practices and firm performance. Journal of Knowledge Management 20 (2): 230–257. https://doi.org/10.1108/JKM-09-2015-0336

Jablonka K., Ai Q., Al-Feghali A., Badhwar S., Bocarsly J. et al. 2023. 14 examples of how LLMs can transform materials science and chemistry: A reflection on a large language model hackathon. Digital Discovery 2 (5): 1233–1250. https://doi.org/10.1039/D3DD00113J

Jarrahi M., Askay D., Eshraghi A., Smith P. 2023. Artificial intelligence and knowledge management: A partnership between human and AI. Business Horizons 66 (1): 87–99. https://doi.org/10.1016/j.bushor.2022.03.002

Jiang S., Hu J., Magee C. L., Luo J. 2024. Deep learning for technical document classification. IEEE Transactions on Engineering Management 71: 1163–1179. https://doi.org/10.1109/TEM.2022.3152216

Jiang Z., Xu F. F., Araki J., Neubig G. 2020. How can we know what language models know? Transactions of the Association for Computational Linguistics 8: 423–438. https://doi.org/10.1162/tacl_a_00324

Kampik T., Warmuth C., Rebmann A., Agam R., Egger L. et al. 2023. Large process models: business process management in the age of generative AI. arXiv preprint. https://doi.org/10.48550/arXiv.2309.00900

Kandpal N., Deng H., Roberts A., Wallace E., Raffel C. 2023. Large language models struggle to learn long-tail knowledge. In: Proceedings of the 40th International Conference on Machine Learning, PMLR 202: 15696–15707. https://proceedings.mlr.press/v202/kandpal23a.html

Lan Y., He G., Jiang J., Jiang J., Zhao W. X., Wen J. R. 2022. Complex knowledge base question answering: A survey. IEEE Transactions on Knowledge and Data Engineering 35 (11): 11196–11215. https://doi.org/10.1109/TKDE.2022.3223858

Lewis P., Perez E., Piktus A., Petroni F., Karpukhin V. et al. 2020. Retrieval-augmented generation for knowledge-intensive NLP tasks. In: Advances in Neural Information Processing Systems 33 (NeurIPS 2020). https://doi.org/10.48550/arXiv.2005.11401

Li C., Wang J., Zhang Y., Zhu K., Hou W. et al. 2023. Large language models understand and can be enhanced by emotional stimuli. arXiv preprint. https://doi.org/10.48550/arXiv.2307.11760

Li J., Wang S., Zhang M., Li W., Lai Yu. et al. 2024. Agent hospital: A simulacrum of hospital with evolvable medical agents. arXiv preprint. https://doi.org/10.48550/arXiv.2405.02957

Liga D., Robaldo L. 2023. Fine-tuning GPT-3 for legal rule classification. Computer Law & Security Review 51: 105864. https://doi.org/10.1016/j.clsr.2023.105864

Ling C., Zhao X., Lu J., Deng C., Zheng C. et al. 2023. Domain specialization as the key to make large language models disruptive: A comprehensive survey. arXiv preprint. https://doi.org/10.48550/arXiv.2305.18703

Lipsey R. G., Carlaw K. I., Bekar C. T. 2005. Economic Transformations: General Purpose Technologies and Long-Term Economic Growth. Oxford University Press.

Lopez-Lira A., Tang Y. 2023. Can СhatGPT forecast stock price movements? Return predictability and large language models. arXiv preprint. https://doi.org/10.48550/arXiv.2304.07619

Manesh M., Pelligrini M., Marzi G., Dabic M. 2021. Knowledge management in the fourth industrial revolution: Mapping the literature and scoping future avenues. IEEE Transactions on Engineering Management 68 (1): 289–300. https://doi.org/10.1109/TEM.2019.2963489

Maslej N., Fattorini L., Perrault R., Parli V., Reuel A. et al. 2024. The AI index 2024 annual report. Institute for Human-Centered AI, Stanford University. [Electronic resource]. https://aiindex.stanford.edu/report/ (accessed: 23.04.2024).

Mikalef P., Gupta M. 2021. Artificial intelligence capability: Conceptualization, measurement calibration, and empirical study on its impact on organizational creativity and firm performance. Information & Management 58 (3): 103434. https://doi.org/10.1016/j.im.2021.103434

Mohr J., Yunus A. 2023. Generative AI: What it means for knowledge management. Forrester Report. [Electronic resource]. https://www.forrester.com/report/generative-ai-what-it-means-for-knowledge-management/RES179524 (accessed: 19.04.2024).

Nonaka I., Takeuchi H. 2019. The Wise Company: How Companies Create Continuous Innovation. Oxford University Press.

Noy S., Zhang W. 2023. Experimental evidence on the productivity effects of generative artificial intelligence. Science 381 (6654): 187–192. https://doi.org/10.1126/science.adh2586

O’Leary D. E. 2024. The rise and design of enterprise large language models. IEEE Intelligent Systems 39 (1): 60–63. https://doi.org/10.1109/MIS.2023.3345591

Pan S., Luo L., Wang Y., Chen C., Wang J., Wu X. 2024. Unifying large language models and knowledge graphs: A roadmap. IEEE Transactions on Knowledge and Data Engineering 36 (7): 3580–3599. https://doi.org/10.1109/TKDE.2024.3352100

Peifeng L. I. U., Qian L., Zhao X., Tao B. 2024. Joint Knowledge Graph and Large Language Model for Fault Diagnosis and Its Application in Aviation Assembly. IEEE Transactions on Industrial Informatics 20 (6): 8160–8169. https://doi.org/10.1109/TII.2024.3366977

Platt M., Platt D. 2023. Effectiveness of generative artificial intelligence for scientific content analysis. In: IEEE 17th International Conference on Application of Information and Communication Technologies (AICT); 1–4. https://doi.org/10.1109/AICT59525.2023.10313167

Radford A., Narasimhan K., Salimans T., Sutskever I. 2018. Improving language understanding by generative pre-training. [Electronic resource]. https://www.mikecaptain.com/resources/pdf/GPT-1.pdf (accessed: 09.04.2024).

Rethlefsen M. L., Kirtley Sh., Waffenschmidt S., Ayala A. P., Moher D. et al. 2021. PRISMA-S: An extension to the PRISMA statement for reporting literature searches in systematic reviews. Systematic Reviews 10: 39. https://doi.org/10.1186/s13643-020-01542-z

Ritala P., Ruokonen M., Ramaul L. 2024. Transforming boundaries: How does ChatGPT change knowledge work? Journal of Business Strategy 45 (3): 214–220. https://doi.org/10.1108/JBS-05-2023-0094

Roberts A., Raffel C., Shazeer N. 2020. How much knowledge can you pack into the parameters of a language model? arXiv preprint. https://doi.org/10.48550/arXiv.2002.08910

Romera-Paredes B., Barekatain M., Novikov A., Balog M., Kumar M. P. et al. 2024. Mathematical discoveries from program search with large language models. Nature 625 (7995): 468–475. https://doi.org/10.1038/s41586-023-06924-6

Sadiq R. B., Safie N., Abd Rahman A. H., Goudarzi S. 2021. Artificial intelligence maturity model: A systematic literature review. PeerJ Computer Scence 7: e661. https://doi.org/10.7717/peerj-cs.661

Sahoo P., Singh A., Saha S., Jain V., Mondal S., Chadha A. 2024. A systematic survey of prompt engineering in large language models: Techniques and applications. arXiv preprint. https://doi.org/10.48550/arXiv.2402.07927

Saka A., Taiwo R., Saka N., Salami B. A., Ajayi S. et al. 2024. GPT models in construction industry: Opportunities, limitations, and a use case validation. Developments in the Built Environment 17: 100300. https://doi.org/10.1016/j.dibe.2023.100300

Sarkar C., Das B., Rawat V. S., Wahlang J. B., Nongpiur A. et al. 2023. Artificial intelligence and machine learning technology driven modern drug discovery and development. International Journal of Molecular Sciences 24 (3): 2026. https://doi.org/10.3390/ijms24032026

Sauer P., Seuring S. 2023. How to conduct systematic literature reviews in management research: A guide in 6 steps and 14 decisions. Review of Managerial Science 17: 1899–1933. https://doi.org/10.1007/s11846-023-00668-3

Schaeffer R., Miranda B., Koyejo S. 2023. Are emergent abilities of large language models a mirage? Advances in Neural Information Processing Systems (NeurIPS 2023) 36. [Electronic resource]. https://proceedings.neurips.cc/paper_files/paper/2023/hash/adc98a266f45005c403b8311ca7e8bd7-Abstract-Conference.html (accessed: 18.04.2024).

Shanahan M. 2024. Talking about large language models. Communications of the ACM 67 (2): 68–79. https://doi.org/10.1145/3624724

Snyder H. 2019. Literature review as a research methodology: An overview and guidelines. Journal of Business Research 104: 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039

Sun K., Xu Y. E., Zha H., Liu Y., Dong X. L. 2023. Head-to-tail: How knowledgeable are large language models (LLM)? AKA will LLMs replace knowledge graphs? arXiv preprint. https://doi.org/10.48550/arXiv.2308.10168

Sun Y., Zhang Q., Bao J., Lu Y., Liu S. 2024. Empowering digital twins with large language models for global temporal feature learning. Journal of Manufacturing Systems 74: 83–99. https://doi.org/10.1016/j.jmsy.2024.02.015

Sutton R. 2019. The Bitter Lesson. Incomplete Ideas (blog). [Electronic resource]. http://www.incompleteideas.net/IncIdeas/BitterLesson.html (accessed: 11.05.2024).

Taylor R., Kardas M., Cucurull G., Scialom T., Hartshorn A. et al. 2022. Galactica: A large language model for science. arXiv preprint. https://doi.org/10.48550/arXiv.2211.09085

Teubner T., Flath C. M., Weinhardt C., van der Aalst W., Hinz O. 2023. Welcome to the era of ChatGPT et al. The prospects of large language models. Business & Information Systems Engineering 65 (2): 95–101. https://doi.org/10.1007/s12599-023-00795-x

Vaswani A., Shazeer N., Parmar N., Uszkoreit J., Jones L. et al. 2017. Attention is all you need. In: 31st Conference on Neural Information Processing Systems (NIPS 2017). [Electronic resource]. https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (accessed: 09.04.2024).

Vinchon F., Bartolotta S., Gironnay V., Botella M., Bourgeois-Bougrine S. et al. 2023. Artificial Intelligence & Creativity: A manifesto for collaboration. Journal of Creative Behavior 57 (4): 472–484. https://doi.org/10.1002/jocb.597

Walkowiak E. 2023. Task-interdependencies between generative AI and workers. Economic Letters 231: 111315. https://doi.org/10.1016/j.econlet.2023.111315

Wang C., Liu X., Song D. 2020. Language models are open knowledge graphs. arXiv preprint. https://doi.org/10.48550/arXiv.2010.11967

Wang K., Variengien A., Conmy A., Shlegeris B., Steinhardt J. 2022. Interpretability in the wild: A circuit for indirect object identification in GPT-2 small. arXiv preprint. https://doi.org/10.48550/arXiv.2211.00593

Wang R., Zelikman E., Poesia G., Pu Y., Haber N., Goodman N. D. 2023. Hypothesis search: Inductive reasoning with language models. arXiv preprint. https://doi.org/10.48550/arXiv.2309.05660

Wang S., Xu S. 2024. 16 Changes to the way enterprises are building and buying generative AI. a16. [Electronic resource]. https://a16z.com/generative-ai-enterprise-2024/ (accessed: 05.04.2024).

Weidinger L., Uesato J., Rauh M., Griffin C., Huang P.-S. et al. 2022. Taxonomy of risks posed by language models. In: Proceedings of the 2022 ACM Conference on Fairness, Accountability, and Transparency (FAccT’22); 214–229. https://doi.org/10.1145/3531146.3533088

Wu S., Irsoy O., Dabravolski V., Dredze M., Gehrmann S. 2023. BloombergGPT: A large language model for finance. arXiv preprint. https://doi.org/10.48550/arXiv.2303.17564

Xi Z., Chen W., Guo X., He W., Ding Y. et al. 2023. The rise and potential of large language model based agents: A survey. arXiv preprint. https://doi.org/10.48550/arXiv.2309.07864

Yang C., Wang X., Lu Y., Liu H., Le Q. V., Zhou D., Chen X. 2023. Large language models as optimizers. arXiv preprint. https://doi.org/10.48550/arXiv.2309.03409

Yang L., Chen H., Li Z., Ding X., Wu X. 2024a. Give us the facts: Enhancing large language models with knowledge graphs for fact-aware language modeling. IEEE Transactions on Knowledge and Data Engineering. Early Access. https://doi.org/10.1109/TKDE.2024.3360454

Yang J., Jin H., Tang R., Han X., Feng Q. et al. 2024b. Harnessing the power of LLMs in practice: A survey on ChatGPT and beyond. ACM Transactions on Knowledge Discovery from Data. https://doi.org/10.1145/3649506

Yang T., Mei Y., Xu L., Yu H., Chen Y. 2024c. Application of question answering systems for intelligent agriculture production and sustainable management: A review. Resources, Conservation and Recycling 204: 107497. https://doi.org/10.1016/j.resconrec.2024.107497

Yao S., Yu D., Zhao J., Shafran I., Griffiths T. et al. 2023. Tree of thoughts: Deliberate problem solving with large language models. In: Advances in Neural Information Processing Systems 36 (NeurIPS 2023). [Electronic resource]. https://proceedings.neurips.cc/paper_files/paper/2023/hash/271db9922b8d1f4dd7aaef84ed5ac703-Abstract-Conference.html (accessed: 02.05.2024).

Yu D., Zhu C., Yang Y., Zeng M. 2022a. JAKET: Joint pre-training of knowledge graph and language understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI-22) 36 (10): 11630–11638. https://doi.org/10.1609/aaai.v36i10.21417

Yu W., Zhu C., Li Z., Hu Z., Wang Q. et al. 2022b. A survey of knowledge-enhanced text generation. ACM Computing Surveys 54 (11s): 1–38. https://doi.org/10.1145/3512467

Yue X., Ni Y., Zhang K., Zheng T., Liu R. et al. 2023. MMMU: A massive multi-discipline multimodal understanding and reasoning benchmark for expert AGI. arXiv preprint. https://doi.org/10.48550/arXiv.2311.16502

Zelenkov Y. 2018. The effectiveness of Russian organizations: The role of knowledge management and change readiness. Russian Management Journal 16 (4): 513–536. https://doi.org/10.21638/spbu18.2018.403

Zelenkov Y. 2022. Explaining the IT value through the information support of decision-making. In: Digitalization of Society, Economics and Management: A Digital Strategy Based on Post-pandemic Developments. Springer; 29-48. https://doi.org/10.1007/978-3-030-94252-6_3

Zhong Y., Goodfellow S. D. 2024. Domain-specific language models pre-trained on construction management systems corpora. Automation in Construction 160: 105316. https://doi.org/10.1016/j.autcon.2024.105316

Zhou B., Li X., Liu T., Xu K., Liu W., Bao J. 2024. CausalKGPT: Industrial structure causal knowledge-enhanced large language model for cause analysis of quality problems in aerospace product manufacturing. Advanced Engineering Informatics 59: 102333. https://doi.org/10.1016/j.aei.2023.102333


Translation of references in Russian into English

Dolotov A. 2024. Integration difficulties: What will help accelerate GPT business transformation. Forbes. [Electronic resource]. https://www.forbes.ru/mneniya/507501-sloznosti-integracii-cto-pomozet-uskorit-gpt-transformaciu-biznesa (accessed: 05.04.2024). (In Russian)

Yakov and Partners. 2023. Artificial intelligence in Russia — 2023: Trends and prospects. [Electronic resource]. https://yakovpartners.ru/publications/ai-future/ (accessed: 05.04.2024). (In Russian)

Загрузки

Опубликован

29.12.2024

Как цитировать

Зеленков, Ю. А. (2024). Управление знаниями организации и большие языковые модели. Российский журнал менеджмента, 22(3), 573–601. https://doi.org/10.21638/spbu18.2024.309